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The paper deals with the key features of rock behavior and their manifestations in loading 
diagrams. Mathematical models are proposed for describing elastic-plastic deformation, 
creep, and fracture of rocks. Deformation beyond the elastic limit is described using a model 
based on the combined yield surface and the nonassociated flow rule. The yield surface con-
sists of tension cut-off segment, modified linear segments of the Drucker–Prager criterion 
and cup. The dilatancy coefficient depends on pressure and volumetric deformation. Model 
equations are derived to describe deformation in the dilation and compaction modes, as well 
as strain localization and fracture with consideration for damage kinetics. Several examples 
of numerical modeling are given to illustrate these phenomena. 
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1. INTRODUCTION 

The solution of geomechanical problems, like any calcu-
lation of stresses and strains in a body, is performed within 
a mathematical model describing the behavior of the given 
medium. The main difficulty is that the heterogeneous 
structure and the presence of pores and cracks of different 
sizes lead to complex nonlinear behavior of rocks under 
loading, which strongly depends on the loading scale and 
conditions. The key factors include the effective stresses, 
time of the process, temperature, pore pressure, as well as 
physico-chemical aspects in some cases. 

The complex behavior of rocks is observed at all stages 
of deformation. The early loading stage with reversible de-
formation corresponds to nonlinear elasticity, associated 
with the closure of a part of micropores and cracks [1–4]. 
After reaching the yield point, the hardening stage begins 
during which the reversible and irreversible parts of defor-
mation increase and the yield limit also increases. Irre-
versible deformation of rocks can be accompanied by di-
lation or compaction; its volume either increases or 
decreases depending on the stress state and structure of 
rock. Beyond the ultimate stress, shear banding and failure 
occur. The orientation of macrocracks and shear bands 

also depends on the irreversible deformation mode with 
dilation or compaction. 

Other factors influencing the behavior of rocks are the 
time of the process and the scale. The effect of the sample 
dimensions is primarily due to the imperfect structure, 
cracks, macrodefects, and heterogeneities, which cannot 
be neglected as they largely determine the deformation be-
havior of the medium. For example, unhealed fault zones 
are the primary sources of deformation, and heterogenei-
ties lead to nonuniform stress distribution and concentra-
tion. The appearance of the time factor even in quasi-static 
problems is due to a prominent role of dislocation pro-
cesses, viscous effects, and creep, whose influence in-
creases at long times. 

Thus, a number of problems can be identified for de-
scribing the behavior of rocks depending on a variety of 
conditions and properties. For calculations, a mathematical 
model is needed that takes into account the basic behavior 
patterns under given conditions. In addition, it is necessary 
to have effective algorithms and numerical calculation pro-
grams implementing mathematical models, as well as 
changing conditions at external and internal boundaries, in-
cluding crack edges. Obviously, the choice of a mathemat-
ical model and calculation method is determined by the 
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specific task. Some cases require the use of coupled poro-
elastic-plasticity models that describe the coupled pro-
cesses of rock mass deformation and diffusion of liquid or 
heat. There are no universal models and algorithms be-
cause their development is too complex and actually inef-
fective. Therefore, the concept of universality must be 
used taking into account a particular object and conditions, 
as well as the possibility of broadening the class of de-
scribed phenomena and processes that can be potentially 
important. Clearly, the decisive role in solving a problem 
is played by the problem formulation and consequently by 
the choice of a mathematical model, which is based on the 
interpretation of available data on rock properties and pos-
sible behavioral scenarios under given conditions. 

Here we present a mathematical model and use it to 
consider the deformation features of rocks and their man-
ifestations in loading diagrams. The reported results of nu-
merical modeling were obtained using the proposed math-
ematical model and original software developed by 
solving dynamic equations with an explicit numerical 
scheme [5]. Algorithms for 2D and 3D numerical calcula-
tions and the implementation of mathematical models are 
described in more detail elsewhere [6–8]. 

2. CONSTITUTIVE RELATIONS 

Here we adopt the hypothesis that the deformation and the 
strain rate can be decomposed into elastic and irreversible 
parts: 

e irr
ij ij ijε = ε + ε   , (1) 

where ijε  is the strain rate component, and the irreversible 
part can also include plastic and viscous components: 

irr p V
ij ij ijε = ε + ε   .  (2) 

Then the law of elasticity can be written as: 

( ) ( )2  irr irr
ij ij ij ijσ = λ ε − ε δ + µ ε − ε     (3) 

where ijσ  are the stress tensor components, the dot above 
means the time derivative, λ and μ are the Lamé parame-
ters and ijδ  is the Kronecker delta. Note that the rates of 
change of stresses and strains in the giv en equations can 
be replaced by their increments. 

For viscous deformation we write the equation: 

ijV
ij

s
ε =

η
 , (4) 

where ijs  are the deviatoric stress tensor components, and 
η is the viscosity coefficient. The increment of the inelas-
tic or plastic part of the strain tensor, calculated when the 
stresses reach the yield surface ( , ) 0,p

ij ijf σ ε =  is deter-
mined by the equation: 

,p
ij

ij

gd d ∂
ε = λ

∂σ
 (5) 

Where p
ijdε  is the plastic strain increment, )( ,  p

ij ijg σ ε  is the 
plastic potential, and dλ  is the multiplier determined dur-
ing the process. It should be noted that we use the nonas-
sociated flow rule, indicating that the plastic potential 
function and the yield function are independent. 

Deformation beyond the elastic limit is described us-
ing the combined yield surface [7,8], shown in Fig. 1. The 
yield surface curve consists of three regions, including two 
linear segments of the Drucker-Prager failure line [9–12]: 

1 ,u uf Y= τ −α σ−  at   ,t uσ ≤ σ ≤ σ  (6) 

2 ,f Y= τ −ασ−  at 0  ,uσ < σ ≤ σ  (7) 

and the elliptical cap [13]: 
2 2

0
3 2 2

( )
1 0,   f

a b
σ−σ τ

= + − = at 0 ,σ > σ  (8) 

where 3kkσ = −σ  is the first stress tensor invariant, 
1/2( / 2)ij ijs sτ =  is the equivalent shear stress, α and Y are 

parameters, and 1 0a = σ −σ , 0b c= +ασ  are the semi-axes 
of the ellipse. The linear form of the Drucker–Prager yield 
segments is adopted for simplicity, as well as because the 
generally accepted data contain a minimum of parameters, 
usually the values of cohesion and internal friction. The 
presence of junction points between the surface segments 

Fig. 1. Generalized view of (a) combined yield surface: τ is the 
equivalent shear stress, σ are the average stresses, φ is the 
Drucker–Prager internal friction angle,  is the Drucker–Prager 
cohesion,  is the threshold effective pressure of transition from 
dilation to compaction; (b) changes in the yield surface during 
inelastic deformation. 

(a) 

(b) 
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is not a problem from the mathematical point of view, be-
cause we can accept that these points belong to only one 
of the segments. It is also easy to slightly modify the equa-
tions to ensure a smooth transition between the segments. 

Since the Drucker–Prager surface does not describe 
the behavior of rocks under tensile conditions, a truncated 
surface is usually used under negative pressure or normal 
stress. Modeling the deformation and fracture of samples 
under uniaxial loading encounters great difficulties. Con-
ventional models and approaches do not work. Therefore, 
either very complicated models are applied, or heteroge-
neous samples are considered [14,15]. Here this problem 
was solved with minor changes reflected in Fig. 1 and in 
the corresponding equations. It is not difficult to ensure a 
smooth connection of sections using smoothing. Under 
uniaxial loading, the stress state to the left of the line de-
scribed by the relation 3τ = σ  contains at least one ten-
sile stress component. This means that the yield surface 
and model must be constrained or corrected from the point 
of intersection of the given line with the yield surface. The 
intersection point is determined by the coordinates: 

( )/ 3Yσ = −α , 1
3

Y α 
τ = + 

−α 
. (9) 

With available tensile test data, the situation is clear. If 
there are no such data, it can be assumed that, e.g., 

2uα = α , then 

3
,  

3
u

uY Y
−α

=
−α

 where , 3.uα α <   (10) 

The initial yield surface corresponds to the elastic limit 
and describes only the beginning of the process, providing 
the first estimates of the onset of plastic deformation. 
Changes in the yield surface during irreversible defor-
mation at the hardening and softening stages are conven-
ient to describe using the equation [6–8,12]: 

( ) ( )0 ( ) ( ,)1p p pY Y h A D γ = + γ − γ   (11) 

where h is the hardening coefficient, pdγ  is the increment 
in the equivalent shear plastic strain, *( 2 /)p pA γ = γ γ , and 

* 2)/)( (p pD γ = γ γ , *γ  is the critical strain above which the 
material softening prevails. 

Compaction occurs with changes in the yield surface 
cap, which can shift along the pressure axis and expand. 
This process can be described by the relation [7,8]: 

0 0( ) ,
m

p
p

∗

∗

 ε
σ ε = σ  ε + ε 

 (12) 

equivalent to 0 0( ) ( ) ,m∗′ ′σ φ = σ φ φ  where ∗ ∗ε = φ  is the initial 
porosity, p∆φ = ε  is the volumetric strain, 0 0a a r= + ∆σ , r 

and m are parameters. The plastic potential equations are 
assumed to take the form [7]: 

β ,g = τ − σ  for 0  σ ≤ σ , (13) 

1 ,g = −β σ + κτ  for 0  σ > σ , (14) 

so that 1 sinβ = ψ , cosκ = ψ , where angle ψ determines 
the slope of the plastic potential surface, and 1 ,β κ = β   

p pd dβ = ε γ  (15) 

is the dilatancy coefficient. It should be noted that the di-
latancy coefficient is the most difficult parameter to deter-
mine, because its value strongly depends not only on the 
initial properties of rock, but also on the current stress-
strain state. There are many equations taking into account 
the stress-strain dependence of the dilatancy coefficient, 
e.g., [7,11,16–18]. 

The dilatancy coefficient is usually constrained as 
β ≤ α, e.g., [11]. By considering the relation of work on 
plastic strain, it is easy to obtain that for the Drucker–
Prager model: 

Y
β < α +

σ
. (16) 

Therefore, the commonly used constraint is valid in the 
case of a granular medium. At low pressures in the rock, 
the dilatancy coefficient can take higher values, which is 
confirmed by numerical modeling results. With increasing 
pressure and the development of plastic deformation, the 
dilatancy coefficient decreases. 

The proposed model corresponds to a series connection 
of elastic, plastic and viscous elements. However, the de-
scription of rock deformation often requires a more compli-
cated model that takes into account additional viscoelastic 
and viscoplastic properties. A schematic of such a model is 
presented in Fig. 2. The first element in the schematic cor-
responds to elasticity with modulus 1µ . The second element 
corresponds to plasticity and fracture that occur upon reach-
ing the equivalent shear stress 1sτ . The third element corre-
sponds to viscosity with coefficient 1.η  The parallel connec-
tion of the plastic and viscous elements (Fig.2, element 4) 
indicates that viscous deformation occurs beyond the elastic 
limit 2sτ . In this case, the irreversible strain increment is de-
termined by the equation: 

,p
ij rel

ij

dt gd d
t

∂ ε = λ  ∂σ 
 (17) 

where relt  is the relaxation time, dt is time increment. 
The last element 5 allows taking into account the in-

fluence of the loading rate on the elastic moduli and the 
velocity dispersion of elastic waves. 
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The time of loading of the medium often greatly affects 
the deformation process, not only due to creep but also due 
to crack initiation and growth [15]. Fracture occurs due to 
damage accumulation in the medium and a decrease in the 
effective strength. This process can be taken into account 
using kinetic parameters. The change in strength due to 
damage accumulation was taken into account by means of 
the equation: 

( ) ( )0 ))( ,  , ) 1 ( ( 1) ( ,p p p tY t Y h A D D t γ σ = + γ − γ − σ 
, (18) 

where tD  is the kinetic function based on the linear dam-
age accumulation rule: 

( )
0

2
* 0

*2 *2

Σ Σ
.

Σ
tt

t
D dt

T
−

= ∫  (19) 

Here 0Σ,  Σ  are Coulomb stress (or other effective stress 
for specific conditions) and the threshold stress above 
which damage accumulation begins, *Σ  and *T  are the 
stress and the characteristic time that determine the dam-
age accumulation rate, 0t  and *t  are the initial and current 
times. 

The discussed approach is effective when considering 
the failure of underground structures with time, karst sink-
hole formation, or mine roof collapse, e.g., [19–21]. Fig. 3 
shows the process of rock failure with shear banding under 
its own weight in conditions where stresses do not reach 
the initial strength of the medium throughout the entire 
volume. 

3. DEFORMATION OF ROCK SAMPLES 

The study of rock properties, the construction of behavior 
models, and the determination of model parameters are car-
ried out on laboratory rock samples with dimensions of sev-
eral centimeters [1–4]. Therefore, we will first highlight the 
most important behavior features of rocks on this scale. 
Analysis of loading diagrams with identifying the charac-
teristic stages o f rock deformation in the corresponding 
curve regions can be found in many works, e.g., [1–4,22]. 
We will briefly describe, in a simplified form, the most im-
portant behavior features and their manifestations in load-
ing diagrams in order to choose a basic behavior model and 
determine its parameters for numerical calculations. 

Fig. 4 shows a generalized view of rock loading dia-
grams for axial and volumetric strains in different defor-
mation modes, where 1 cQ = σ −σ . The initial stage of 
loading curves is often nonlinear, primarily due to mul-
tiple mesocracks, some of which are open. As the load 
increases, the cracks close, and the elastic moduli in-
crease [1,2,23–26]. The value of the deviation from lin-
earity is determined by the crack opening volume, which 
is closed with loading. Quite simple relations of nonlin-
ear elasticity are proposed in [22,27,28]. Experimental 
loading curves often have different slopes at different 
confining pressures. In this case, the pressure depend-
ence of elastic moduli can be constructed without as-
sessing the void volume. 

Fig. 2. A mechanical schematic of the rock behavior model. 

Fig. 3. Shear banding in the rock mass due to long-term damage accumulation under its own weight: (a) 0.1 model period (year); 
(b) 100 model periods (years). 

(a) (b) 
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Deviation from the linear course indicates the begin-
ning of irreversible deformation. This point on the loading 
diagram, corresponding to the elastic limit, is often deter-
mined very approximately because the curves are rarely 
perfect. To identify the point, it is necessary to consider 
not only the axial strain curves, but also radial and volu-
metric ones. The volumetric strain curve often shows more 
clearly the deviation from the linear elastic portion. The 
error in determining the elastic limit is partly compensated 
by taking into account strain hardening. 

The main interesting feature in the next loading stage, 
in addition to the relationship between hardening and ac-
cumulated strain, is the ratio of the volumetric and shear 
components of irreversible deformation. This ratio deter-
mines the parameter characterizing dilatancy. As can be 
seen in the Fig. 4, the deviation from the elasticity portion 
in the volumetric strain curve can have a different sign, 
depending on the dilation or compaction mode [29–33]. In 
the case of dilatancy, the curve bends towards lower com-
pression values as the material expands; the dilation com-
pensates the elastic compression and then exceeds it. As a 
result, the loading curve turns downward/upward until the 
initial volume is exceeded. In the case of compaction, on 
the contrary, the volume decreases rapidly. Therefore, this 
process must be described by slightly different laws, be-
cause the degree of compaction is limited by the presence 
of pores or voids, and the degree of dilation is limited only 
by maintaining conditional continuity, i.e., the integrity of 
the studied material, under given conditions. Moreover, 
when the sample is unloaded and removed from the load-
ing device, it can fragment or even break into pieces. 

The important point here is that irreversible defor-
mation proceeds uniformly only in the hardening region, 
although detailed examination often reveals strain locali-
zation zones and internal cracks from the very beginning 
of deformation. After reaching the ultimate strength, the 
loading curve usually descends. This stage of deformation 
is called softening due to a decrease in strength. The stress 

often drops sharply at low confining pressure, indicating 
the formation of main cracks, brittle fracture, and sample 
breaking. With increasing confining pressure, the de-
scending branch becomes less steep and longer, and frac-
ture occurs in a shear band or a set of bands. In this case, 
the sample can maintain its conditional integrity and re-
sidual strength due to friction between fragments for a 
long time. In the limiting case of high confining pressure, 
the behavior is viscous; the stress does not drop or de-
creases very slowly. However, the descending postcritical 
branch of the loading diagram no longer indicates the 
strength decrease, but rather the localization of the process 
and active damage accumulation in the localization zone. 

There are two more differences in the behavior of rock 
samples in the dilation and compaction modes, which ap-
pear in the loading diagrams. During dilatancy the stress 
usually increases to the ultimate strength and then drops, 
while compaction occurs with stress increase. The stress 
drop is possible only under active shear failure with a local 
reduction in porosity. Noteworthy is that compaction 
banding appears as the flattest region in the loading dia-
gram and is often accompanied by stress drops [7,29–33]. 
The more extended and pronounced the flat portion, the 
more pronounced are the compaction bands. This process 
is most often observed at the beginning of irreversible de-
formation when the rock porosity is the highest. 

The next difference is reflected in the orientation of 
strain localization bands, determined by the internal fric-
tion and dilatancy coefficients [34–37] and by the stress 
state. Approximate estimates of the orientation with re-
spect to the principal stress axes are given by the expres-
sion [38, 39]: 45 ( ) / 4,θ = + ϕ+ψ  where φ and ψ are the 
angles of internal friction and dilatancy, respectively. The 
bands are oriented away from the axis of greatest compres-
sion in the range of 0° – 45° in the dilation mode and 
45° – 90° in compaction. Accurately predicting the orien-
tation of strain localization bands is quite difficult, be-
cause the parameters change during the process and the  

Fig. 4. Characteristic view of rock loading diagrams for axial and volumetric strains. 

(a) (b) 
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(d) 

(a) (b) (c) 

Fig. 6. Convergence of the model solution for shear banding. Calculations on (a) 50×100, (b) 100×200, (c) 200×400 grids and (d) load 
diagrams. 
 

Fig. 5. Numerical calculation of sample deformation. Strain distributions at the stage of shear and compaction bands formation:  
(a) bazhenov rock under uniaxial loading, (b) sandstone at the confining pressure 60 MPa and (c) 90 MPa. 

 

(a) (b) (c) 
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orientation of the principal stress axes depends on the ge-
ometry and can also change in time and space. Fig. 5 
shows the numerical modeling results for sample defor-
mation obtained with the proposed model equations under 
different loading conditions. The Fig. 5 shows the distri-
bution of irreversible strains at the stage of shear banding 
under uniaxial loading (Fig. 5a) and compaction banding 
under confining pressures of 60 and 90 MPa (Figs. 5b and 
5c). It is clearly seen that in the absence of confining pres-
sure the strain localization bands have an orientation close 
to the loading axis. At high confining pressure, the orien-
tation of the compaction bands is close to orthogonal with 
respect to the axis of greatest compression. 

Analysis of postcritical deformation at the softening 
stage and numerical modeling of the unstable process in-
volve significant difficulties [1–4,37–44]. The stress drop 
rate is determined by the rock properties and the width of 
localization bands, which in turn depends on the loading 
conditions and confining pressure. In numerical modeling 
of the localization process, convergence can be attained by 
using special models and regularizing algorithms [41–44]. 
Since the fracture process occurs in time and is dynamic, 
it can be best described by dynamic equations. However, 
even in this case, convergence is achieved by using the 
viscoelastic model element with the relaxation time gov-
erning the band width. The relaxation time in Eq. (10) can 
be specified by the relation / ,rel

st H V=  where H is the 
shear band width, and sV  is the shear wave velocity. Thus, 
the description of the basic features of rock deformation 
should be based on the model schematized in Fig. 2. An 
example of numerical calculation using the given equa-
tions is shown in Fig. 6. Good agreement is observed be-
tween the pattern and thickness of shear bands calculated 
on different grids. 

4. CONCLUSIONS 

The behavior of rocks is associated with structural heter-
ogeneity, porosity, and multiple micro-/mesocracks. 
These structural features determine the specific defor-
mation behavior beyond the elastic limit, as well as non-
linear behavior patterns at all deformation stages. In this 
work, some nonlinear deformation features were ana-
lyzed with a focus on the effects produced by the opening 
and closing of mesocracks, both preexisting and formed 
during loading, as well as on the processes induced by 
long-term loading. Attention was also drawn to the need 
of taking into account rheological and kinetic parameters. 

The considered nonlinear features of rock deformation 
can play a significant role in solving many geomechanical 
problems. Though being simple, the proposed equations 
can take into account many behavioral features of rocks 
with different porosity. 
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Модель поведения горных пород, нелинейность и локализация 
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Аннотация. Рассмотрены важнейшие особенности поведения горных пород и их проявления на диаграммах нагружения. 
Представлены варианты математических моделей, описывающие упругопластическую деформацию, а также ползучесть и 
формирование полос локализации. Описание деформации за пределом упругости осуществляется с помощью модели, осно-
ванной на комбинированной предельной поверхности и неассоциированном законе течения. Предельная поверхность вклю-
чает участки модифицированной поверхности Друккера–Прагера и эллиптической зоны. Коэффициент дилатансии зависит 
от давления и объемной деформации. Предложенные соотношения модели позволяют описывать развитие деформации в ре-
жимах дилатансии и компакции, а также локализацию деформации и разрушение с учетом кинетики повреждений. Приведен 
ряд примеров численного моделирования с иллюстрацией указанных явлений. 

Ключевые слова: горные породы; дилатансия; компакция; локализация; определяющие соотношения 


